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Abstract 

On every totally real submanifold M” of @“, one can define a Maslov class analogous to the 
one defined for the Lagrangian submanifolds of @“. We define here a closed l-form, expressed in 
terms of the extrinsic local geometric invariants of M” and the complex structure of U?, whose 
cohomology class is the Maslov class of M”. This generalizes to the totally real case, the result of 
Morvan (1981). This l-form can still be defined if the ambient space @” is substituted by a Kahler 
manifold k2”, but it is not closed in general. However, we can build a variational problem on the 
space of totally real immersions, whose critical points are totally real submanifolds whose form 
defined above vanishes identically. In the case where I%%*” = C”, we give a characterization and 
many examples of such submanifolds. Finally we study the second variation and prove a stability 
result for the critical submanifolds of a KHhler manifold with non-positive Ricci tensor. This extends 
the well-known results on Lagrangian submanifolds of M - 2n. 0 1998 Elsevier Science B.V. 

Subj. Class.: Differential geometry 
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1. Introduction 

Introduced by Maslov [ 121 in 1965 to study the asymptotic behaviour of solutions of 
some partial differential equations, the Maslov class proved to be a natural object in many 
fields of physics (especially in optics cf. [2,9]). This class is defined on every Lagrangian 
submanifold of the cotangent bundle of a manifold (and more generally on the base of 
every symplectic bundle provided with two Lagrangian sub-bundles). In particular, it is 
a symplectic invariant for Lagrangian submanifolds of C”: Two Lagrangian immersions 
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jo, j, of a manifold Mn in @” , which have different Maslov classes, are not homotopic 
through the Lagrangian immersions. 

Arnold has obtained the Maslov class as the pull back, via the Gauss map, of a generator 
of the first cohomology group of the Lagrangian Grassmannian A(n) (cf. [ 11, for instance). 
In 198 1, Morvan [ 131 gave a Riemannian interpretation of this class for Lagragian sub- 
manifolds of C” He defined a closed differential l-form F on the submanifold expressed 
in terms of the mean curvature vector H and the canonical symplectic structure ~2 of C=“: 
p = (n/rr)i,fl (i is the inner product). Its cohomology class is the Maslov class. 

In the first part of this article, we extend the preceding results to the case of totally 
real submanifolds of Cn. We define on every totally real immersion j : Mn ---+ C” a 
differential 1 -form p(j) (the Muslov form of j) by taking the pull back, by the Gauss map, 
of a canonical 1 -form living in the totally real Grassmannian. This 1 -form induces an integer 
cohomology class [p(j)] which we call the Muslov class of the immersion j. This class 
allows us to detect homotopy classes of totally real immersions. (If ju and jt are two totally 
real immersions of Mn and if [y(ju)] # [I], then ju and jt are not homotopic through 
totally real immersions). We give a Riemannian representative of this class in terms of the 
local geometry of the submanifold. 

Theorem 1. The Maslov form of a totally real immersion j : AT’ --+ C” is the I -form: 

l*.(X) = kTr(F-thx) VX E TM”, 

where hx = h(X, .) : TM” --+ T’M” is the contraction of the secondfundamentalform 
h with X and F : T Mn + TIM” the projection over the normal bundle of the complex 
structure J : FX = (JX)‘. 

As in the Lagrangian case, we can define a Maslov form on every totally real immersion 
of a manifold Mn in a Kahler manifold k 2n This one is closed as soon as k2’ has a first . 
Chem form yt which vanishes identically. 

In the Lagrangian case, the formula of Morvan brings out a deep relationship between 
minimality of a Lagrangian submanifold and the Maslov form. One has H = 0 if and only 
if p F 0. In the more general context of isotropic submanifolds, Chen and Morvan [6] have 
also brought to the fore the relationship between Maslov form and a variation problem. It 
is tempting to try to obtain a similar result in the totally real case, but theorem 1 prevents 
us from a so simple relation. We are thus induced to consider a new variational problem 
on the space of totally real immersions such that critical points are immersions with zero 
Maslov form. We define a volume form volt which takes the complex structure J of fi2n 
into account: the J-volume. If 0 : M” x] - E, E[--+ k2” is a deformation of M” (i.e. a 
one-parameter family of totally real immersions such that @o = j) and if v(r) denotes the 
J-volume of @(M”), then we obtain: 

Proposition 2. Let j : M” --+ k 2n be a totally real immersion. Then 
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u’(0) = Jr s P(X) VOlJ + s iT(VOlJ). 

M” aw 

We have written (a@/at) = JX + T E JTMn fI+ TM” the deformation field. We deduce 
the following: 

Theorem 2. Let j : M” --+ M2” be a totally real immersion. Then j is critical for the 
J-volume VJ (among totally real immersions that leave the boundary fied) if and only if 
its Maslov form vanishes identically. 

In Section 4, we give a geometric characterization of totally real immersions in @” which 
have a vanishing Maslov form (STR immersions). This allows us to find numerous examples 
of such immersions. 

We study next the stability problem. It is well known that minimal Lagrangian subman- 
ifolds of Cn are stable. This result can be achieved using a specific calibration of C” [IO]. 
In order to study stability of totally real immersions, we broaden lightly the notion of 
calibration. We define the J-calibrations and obtain the following result. 

Theorem 5. Every totally real submanifold M” of C”, which is critical for the J-volume, 
minimizes homologically the J-volume, i.e. VJ (M”) 5 VJ(N”) for every submanifold N” 
such that aN” = 8Mn and [M” - N”] = 0 in H,,(M2”). 

In the general case (1);12n any Kahler manifold), the computation of the second variation of 
the J-volume leads to the following stability result (compare with [5,15] for the Lagrangian 
case and [6] for the isotropic case): 

Theorem 6. Let M2” be a Ktihler mantfold with non-positive Ricci curvature, then every 
immersion j : M” --+ M2” critical for the J-volume is stable for the J-volume. 

2. Maslov form and Maslov class 

2.1. Geometry of T(n) - The Berger3bration [ 141 

The Grassmannian I(n) of totally real n-planes of C” can be identified with the symmetric 
space Gl(n, @)/Gl(n, rW>. As any symmetric space, ‘T(n) = Gl(n, C)/Gl(n, (w) is a fibre 
bundle over a compact symmetric space, which is here U(n)/O(n). The fibre is a vector 
space which can be identified with the space of real antisymmetric matrices. The map that 
realizes this fibration is called the Berger fibration. It is easily described by means of the 
Mostov decomposition: Every matrix M of Gl(n, C) can be written M = UeiAeS, where 
U is unitary, A real antisymmetric and S real symmetric. The Berger fibration is the map 
defined by 

4 : Gl(n, C)/Gl(n, [w) -+ U(n)/O(n) 
[M = UeiAeS] I--+ [Ul. 
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The space U(n)/0 (n) (which can be identified with the Lagrangian Grassmannian) is again 
a fibre bundle over S’ via the map det*. One has the following diagram: 

1 

Gl(n, C)/Gl(n, R) z U(n)/O(n) % S’, 

where each arrow is a fibration. Let w = (1/2in) (dz/z) be the volume form of S’ Pulling 
back o, one gets a closed l-form a on Gl(n, C)/Gl(n, R). The value of (Y at the identity is 
given by 

o(d(T) = iTr(Im 2’) VT E gl(n, @)/gl(n, [w) = M,(C)/M,(R). 

Definition. The form a ‘(resp. the integer class [cr]) is called the Muslov form (resp. the 
Muslov class) of I(n). 

2.2. Muslov form of a totally real immersion in @” 

In what follows, ( , ) denotes the usual scalar product of C” z R2n, J the complex 
structure and Q = (., J.) the symplectic form. Let M” be a n-dimensional manifold and 
j : M” - C” any immersion. We put the induced metric j*(( , )) on M” and thus j 
becomes an isometric immersion. We shall often write ( , ) instead of j* (( , )) and Mn 
instead of j (M”) if the context is clear. At each point p of M”, we denote by TpM” the 
tangent space and Tk Mn the normal space. An immersion j is called totally real if for every 
point p one has TpM” $ JT, M” = C”. If, moreover JT,,M” = TkM!‘“, the immersion is 
called Lugrungiun. The second fundamental form of j is denoted by h : TM” x TM” -+ 
TIM”. It is well known that h is a symmetric tensor given by 

h(X,Y)=VxY-VxY VX,YETM”, 

where V is the canonical connection of C” 2 R2n and V the Levi-Civita connection of M”. 
One puts H = (l/n)Tr h. This defines a normal vector field called the mean curvature 
vector$eld. If H vanishes identically, j is said to be minimal. 

Let j : Mn --+ @” be a totally real immersion. 

Definition. The (closed) 1 -form defined by w(j) = (1 /n)G*a is called the Muslovform of 
the totally real immersion j. (The Gauss map G of j takes its values in I(n)). The Muslov 
class of j is the cohomology class [p(j)]. 

The Maslov class is (obviously) an invariant for totally real immersions. In particular, if 
,ju and jt are two totally real immersions and if [p(ju)] # [p(jt)], then ju and jt are not 
homotopic through totally real immersions. 

We shall often write I_L instead of p(j). 

Theorem 1. The Muslov form qf a totally real immersion j : M” ---+ @” is given by the 
I -form: 
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p(X) = $Tr(F_lhx) vx E TM”, 

where hx = h(X, .) : TM” + TLMn is the contraction of the secondfundamentalform 
h with X and F : T Mn + TIM” is the projection over the normal bundle of the complex 
structure J : FX = (JX)‘. 

Remark. This formula is a generalization of the formula of Morvan for the Lagrangian 
case [13]. 

Proof of Theorem 1. Let X be a vector field on M" , one has 

p(X) = a(dG(X)) = $Tr Im(dG(X)). 

Let h@x : C” ---+ Cn be the J-linear extension of h(X, .) : TM -+ TIM. One can write 

k(X) = iTrIm( 

Let p be a point of M”. There always exists an orthonormal frame (et, . . . , e,) of TPM” 
for which 521~~~ can be put into the form 

k=[n/Zl 

f+,, = c kkt?2k-’ A 02k. 

k=l 

Here(6”,... , P) denotes the dual frame and ht , . . . , A,,, n real numbers. The immersion 

j being totally real, (et, . . . , e,, Jet, . . . , Je,) is a frame of C” (but it is not orthonormal 

in general). One completes (et, . . . , e,) in an orthonormal frame of C” by putting 

61 = F(et)lllF(et)ll, . . . , En = F(en)/llF(en)ll. 

We denote by (6’, . . . , On, 13’*, . . . , On*) the dual forms of the frame (et, . . . , en, 

Jet, . . . , Je,). One has 

t?k* = (j&q 
Thus, 

=- l xOk*(h(X, ek)) = i xek* 
TC k k 

(7 hjtx, ‘,,cj) 

hj(X, ek)F-‘(Ej), ek 

This finishes the proof of Theorem 1. 
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2.3. Particular cases and applications 

In the following examples, we compute explicitly the Maslov form of some particular 
totally real immersions. Under certain conditions, the Maslov form can be expressed in 
terms of the mean curvature vector and the Lichnerowicz-Wirtinger angle. 

Definition. For every vector X E T,M, the angle 0 5 B(p, X) 5 ix between JX and 
T, M is called the Lichnerowicz-Wirtinger angle of X. 

2.3.1. Totally real immersions such that O(p, X) is independent of X 
Let j : M” + V be a totally real immersion such that the Lichnerowicz-Wirtinger 

angle is independent of X. Let (et, . . , e,) denote an orthonormal frame such that 

k=[n/2] 

S~IT,M = C hkC?2k-1 A 132k, 

k=l 

where (e’,... , 0”) is dual to (et, . . . , e,) and hk E R. As the angle 8(p, X) does not 
depend on X, one defines in a natural way, a function 6 : M” + [0, in]. One has: 

(2) if n is odd, QlrP~n z 0. 
Let P : TM” --+ TM” denote the orthogonal projection of JX on TM”. One has 

filr,,~(X, Y) = (PX, Y). In a Lagrangian point, P is zero. We denote by Lag(j, M”) the 
set of Lagrangian points of the immersion j. One can define on M” \ Lag( j, Mn) an almost 
complex structure i by 

1 
i=-Pp. 

cos 8 

In a Lagrangian point, we put i = 0. 

Proposition 1. Let j : M” + C” be a totally real immersion such that its Lichnerowicz- 
Wirtinger angle does not depend on X. Then the Maslov form of j is given by 

/J(X) = &(-n(JH. X) + sin0 d6’ o i(X)). 

Proo$ If the dimension of M” is odd, then j is Lagrangian and the Maslov form is given 
by p(X) = (n/x) (JX, H). If the dimension is even, one can write 

CL(X) = $Tr(F-thx) = &Tr(hx). 

Deriving the scalar products (Je;, ej), one gets: 
(1) if (i, j) = (2k - 1,2k) or (2k, 2k - l), 

h2k-’ 
2k-1.2k - h;f_,,,k_, = -@(Q-l), h;;,,k_, - h;$,; = d@(e2k), 
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(2) for the other couples (i, j), hij - h;i = 0. 
ThUS, 

Tr(hx) = c hfjXj 
i.j 

= -&(H, JX) + d6’ 
i 

=5(X2k-1e2k - X2ke2k-,) 
k=l 

But i(e2k_1) = e2k and i(e2k) = -e2k_l, therefore 

No = &(?r(H, JX) + sined6’ o i(X)). 0 

Here are some applications. 
Two-dimensional submanifolds. The Lichnerowicz-Wirtinger angle is always indepen- 

dent of X. Proposition 1 gives us the expression of the Maslov form for every totally real 
immersion j : M2 ----+ C2. We then obtain the same expression as in [7]. 

Cayley immersions. Let 0 denote the Cayley algebra and let j : M4 ---+ 0 be an 
immersion. As a vector space, 0 is spanned by 1, i, j, k, e, ei, ej, ek where 1, i, j, k span 
the quaternionic ring W. One has 0 = W @ e[HI. Multiplication by e defines a complex 
structure Je on 0. Let 52 = (Je., .) be the associated Kahler form and define a closed 
4-form by 

@ = -$QAfi+Re(dz). 

Definition. Any immersion j : M4 -+ 0 such that @ (TP M4) = 1 for all p in M4 is 
called a Cayley immersion. 

Remark. In fact, 0 is a calibration and Cayley submanifolds are @-submanifolds for this 
calibration. In particular, they are minimal [IO]. 

For every Cayley immersion, Rlr,,,, 4 has the following expression [ lo]: 

f+#4 = cos(8(p>)@ A IT2 + Q3 A e4>, 

where (0’, . . . , 04) is the dual basis of an orthonormal basis (er , . . . , e4) of TPM4 and 
where B(p) E [0, in]. If 8 = irr then M4 is Lagrangian and if 0 = 0, M4 is complex or 
anticomplex. Thus, let us assume 8(p) ~10, in] for all point p of M4, i.e. M4 is totally 
real. Using Proposition 1, we can write 

P(X) = &(4(H, JX) + sine d6’ o i(X)). 

Any Cayley submanifold is minimal, thus one has 

F(X) = ““,“,i’,‘i). 

Explicit examples of Cayley submanifolds are given in [lo]. 
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Slant submanifolds. An immersion j : Mn -+ Cn is called slant if for all point p E Mn 
and all X E TMn, the angle IV,(X) = L(JX, T,M”) is constant. In that case, if 8 E $rc 
then j is a Lagrangian immersion and if 19 = 0, j is holomorphic or antiholomorphic. We 
assume now 8 # in and 8 # 0. Under these hypothesis, the manifold M” has to be of 
even dimension. Proposition 1 gives us 

F(X) = -&H. JX). 

We find here a well-known formula [5]. 

2.3.2. An explicit example of torus T* embedded in C* with zero Maslov class 
In 1990, Viterbo [ 171 has shown that every Lagrangian embedded torus Tn in C” has a 

non-zero Maslov class. The situation is quite different if one only assumes that the torus is 
totally real. Fiedler [8] and Polterovich [ 161 have built, by topological methods, examples 
of totally real tori with zero Maslov class. We give here an explicit new example of such a 
torus. 

Let jh be the family of embeddings of U2 defined by 

jh : T* + S3 C @* 

with 

f(u, v) = +&sin(q(u, v) - trr), 

g(u, u) = -1/zcos(lp(u, v) - in>, 

qo(u, IJ) = hcos(u + v); h E rw;. 

It is easily checked that: 
(1) The embedding jk is totally real for the complex structure J given by J(x, y, z, t) = 

c-z, -t, x, y). 
(2) The embedding jA is Lagrangian for an other complex structure Jt given by Jt (x, y , z, t) 

= (-t, -z, y, x) and therefore its Maslov class for this other structure is non-zero. 
(3) The image jh(U2) is a torus in S3 c @ 2. Precisely, jA(U2) is a Hopf torus, i.e. the 

reciprocal image of a closed curve in S* by the Hopf fibration. Thus, this torus is flat. 
The Maslov form (for the structure J) of j, can be performed using Theorem 1. One gets 

1 cos(2(o(u, v)) sin(u + v)( 1 + h* sin4(u + v)) 
p(jk) = ; 

S(u, u) 
(du - du), 

with 

6(u, u) = 1 - COS*(~~(U, v))cos*(u + u) + 4cos2(2~(u, u)) sin4(u + u)h* 

-2 sin(4q(u, u)) sin*(u + u) cos(u + u)k. 
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Scheme 1. 

We put 

G(u, v) = 
COS(2q(u, v)) sin(u + u)(l + A2 sin4(u + v)) 

6(u, u) 

Functions u +-+ G(u, vu) and v +--+ G(uu, u) are odd, so [I] = 0. Scheme 1 is the 
stereographic projection of jlr,4(T2). 

2.4. Extension to Kiihler case and relationship with the$rst Chern class 

Until now, we have assumed that the ambient manifold was the complex space C”. We 
wish to generalize these results to the case of a KShler manifold k2n. Let j : Mn ---+ fi2” 
be an (isometric) totally real immersion of M” in A?2n, one can define the Maslov form p 
of j by the formula 

p(X) = iTr(F-‘hx) VX E TM”. 
IT 

In general, this l-form is not closed. Let G’ be the curvature matrix seen as a complex 
matrix and let yt = (1/2irr)Tr(fi,“) be the first Chern form of M2”. Then one has dF = 2~1. 
If yt Ij(M”) = 0 (in particular if yt vanishes identically), the Maslov form is closed and one 
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can define a Maslov class. In this context, it appears as a secondary characteristic class. 
(One could broaden again these results to the case of a complex bundle provided with two 
totally real sub-bundles). 

3. The J-volume 

We assume here that M” is orientable, compact, eventually with boundary and that k*” 
is a Klhler manifold. 

The vanishing of the Lagrangian Maslov form is a minimality condition for the volume 
functional in the space fZ(M" , A%*“) of Lagrangian immersions. Indeed, if v(t) is a variation 
of the volume in the normal direction 6 of a Lagrangian submanifold Ln, one can write 

v’(0) = 12 
s 

(H, 4) VOlLn = n 
s 

(H, JX) VolLn = Tr 
s 

P(X) volL” 3 

L” L” L” 

where X = -J< E TLn (we have assumed 4la~n = 0). Thus, Ln is minimal if and only 
if p is identically zero (cf. [ 131). We generalize these results to the space ‘TR(M”, A?*“) 
of totally real immersions. The idea is to take the complex structure J into account. This 
leads us to define a new volume form: the J-volume. 

3. I. Definition of the J-volume 

Let j be a totally real immersion of Mn into k*‘, p a point of M” and (el, . . . , e,) a 
direct orthonormal frame of Tp Mn. 

Definition. 
(1) The J-density of M” at a point p is the real number p J (p) defined by 

PJ(P) = JQ”(el,...,e,, Jel,..., Je,). 

(2) The J-volume of Mn is the real number VJ(~, M”) defined by 

VJ(j, Mn) = 
s 

p J !‘d,,,n . 

M” 

The real number p J (p) does not depend on the (direct) orthonormal frame and the 
function pJ is Coo (because it never vanishes). If M” has a finite volume then the J- 
volume of M” is finite because 0 < p J 5 1. Moreover, if j is a Lagrangian immersion 
then pJ = 1 and VJ(~, M”) = Vol(M”) in the usual sense. 

3.2. First variation qf the J-volume 

Let j be an immersion of M” in 62n. A deformation 0 of j is Coo map from M” x] --E, 6 [ 
to A?*” such that @jr = @(., t) is a one-parameter family of immersions and such that 
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@O = j.WeputM: = or(Mn) and u(t) = V.t(j, M:) = [M; p.t(t)vol~;. If @ is a 
deformation of a totally real immersion j then, for sufficiently small t, Qt is still a totally 
real immersion. Moreover, if the J-volume of j(M”) is finite, it will be the same for 
M: = @t(M”). Therefore, the function u(t) = VJ (j, M:) is well-defined and Coo. 

Theorem 2. Let j : Mn --+ A? 2n be a totally real immersion. Then j is critical for the 
J-volume VJ (among totally real immersions leaving the boundaryfied) if and only ifits 
Maslov form vanishes identically. 

This theorem is a straightforward consequence of: 

Proposition 2. Let j : M” -+ A? 2n be a totally real immersion. Then 

v’(0) = I7 
s 

F(X)PJ VOlA4” + 
s 

iT(PJ VOh4")- 

M" ahP 

Proo_f: It is easy to check that 

PJ(t)Q*(volM;) = Jlld&(et) A . . A d6,(Jen)ll vol~ln, 

where d6 is the J-linear extension of d@. We put d&(ei) = Zi (if t = 0 then .Zi = ei) and 
G(t) = I]& A ’ . A .&, A J& A . . A J.Z, ]12. Thus, 

v(t) = VJ(j, M:) = 
s 

G 1’4(t) Volga” . 

M" 

One has 

dG(t) 
-&=0=2~(& A ...A f$+,a& A ...A Je,,& A.‘. 

i 

A J~n)lt=o 

. A JZn) ]t=O. 

The flow of E is @l and Zi = (@r)*ei, SO [ei, E] = 0. Thus, 

dG(t) 
dt r=O 

= 2G(O) C(@‘(f& E) + O’*(J?,jE)) 
i 

-CS’*(eeiX) + xB’(h(ei, T)) +div(T) 
i i 

But (l/n> xi O’*(eeiX) = p(X) and a direct computation gives xi @(h(ei, T)) = 
d In p J (T) for all T in TM” . Therefore, 

v’(O) = 
s 

{-n p(X) +dlnpJ(T) +div(T)) G(0)‘/4~~l~n. 

M” 



282 V Borrelli/Journal of Geometry and Physics 25 (1998) 271-290 

It ensues from {din ,oJ(T) + div(T>)pJ ~01.~ = d(ir(pJ ~01~~)) and from G(0) = p; 
that 

u’(0) = -n 
s 

P(X)PJ volW + 
s 

ir (PJ ~01~4~). 

M” aM" 

This proves Proposition 2. ??

4. Immersions in @” which are critical for the J-volume 

In the case where k2” = F, w e give a geometric characterization of critical immersions 
for the J-volume. 

4.1. Special totally real immersions (STR) 

Let (tt, . . . , e,) be a (direct) orthonormal frame of Re(C”) and j : Mn + C” be any 
immersion. At a point p of Mn we denote by (et(p), . . . , e,,(p)) a (direct) orthonormal 
frame of T,Mn Regarding et (p), . . . , e, (p) as complex vectors, one can define a complex 
number z(p) by the formula 

(Here A denotes the exterior product for the complex structure of C”). One has 

PJ(P) = Jldet(ut, JUI, . . . , u,, Jun>l = Idet(u~, . . . , uz)I = Iz(p)l. 

An immersion j is totally real if and only if [z(p)1 > 0 for every point p of M”. In that 
case, one writes z(p) in polar coordinates z(p) = r(p)eiB(P). 

Definition. Let j : M” --+ C” be an immersion and CT be the open set on which j is 
totally real. 
(1) If Vp E U : B(p) = /I = constant, j is said to be special. 
(2) If j is special and U = M”, j is said to be special totally real (STR). 

Remark. This definition broadens the one of Harvey and Lawson for special Lagrangian 
submanifolds [ lo]. 

Theorem 3. Let j : M” - C” be a totally real immersion and p(j) its Maslov form, 
then w(j) = 0 if and only if j is STR. 

ProojI The Maslov form is obtained by means of the Berger fibration E, taking the pull-back 
of the volume form of S’ according to the diagram: 

Mn 5 Gl(n, C)/Gl(n, [w) -I U(n)/O(n) % S’. 
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Since det o n = det/Idetl, p E 0 if and only if det/ldetl = constant. The Jacobian of 
dj@ is given by Jacc(dj’)(p) = r(p)e @(P). Therefore, the condition p z 0 is equivalent 
to B(p) = B = constant. 0 

4.2. Examples of STR immersions 

There is no STR immersion of compact manifold (without boundary) in UY. In fact, if 
j : M” + C” was such an immersion then (t + I)j would be an STR immersion for 
every t > 0 and thus one could define an STR deformation of j by putting Qt = (t + 1) j. 
Let u(t) = VJ(@,(~), Mn). One would have 

u(t) = VJ((~ + l)j, M”) = (t + l)“VJ(j, M”). 

So v’(t) = n(t + I)‘-‘VJ(j, Mn) and therefore u’(0) # 0. 
We give here some examples of STR immersions of (non-compact) manifolds in @“. Any 

restriction of such immersions to a compact domain is critical for the J-volume. 

4.2. I. STR immersions of an open set of the plane 
Let U be an open set of the plane and h : lJ c R2 + Iw be a Coo function. An easy 

computation shows that 

jk: U -+ c2 

c ah ah 
(u, VI - u+i--,-+iu au au > 

is an STR immersion if and only if det(Hess h) # 1. 

4.2.2. STR immersions of a product of curves 
Let y : I -+ [w* be a regular curve of KY2 (I is either S’ or [w). We denote y(t) = 

(x(r), y(t)) and c(t) its curvature. It is easy to check that: 

(1) 

(2) 

(3) 

The (regular) curve y : I -+ R* is an STR immersion if and only if Im 1/ lies inside 
a line. 

If y11 . . . , y,, : I -+ @ are n (regular) curves and if 

(~z)+($+O~ 

then the immersion j defined by 

j : I x . . x I -3 C” 

(0 > . . ,tn)++(xt +einlny,,X2+eiirlny,,...,xn+eirrlnyn_l) 

is an STR. It is an embedding if and only if each yk = .xk + iyk is an embedding. 
Let 

&: 12k-tx12k --+c2 

(t2k- I 3 t2k) w b2k-1 + iY2k, Y2k-I + ix2k). 
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If 

then the product immersion j = 61 x . . + x 6, is an STR. It is an embedding if and 
only if each yk = Xk + iyk is an embedding. 

4.2.3. STR immersions of IIn-’ x R 
Let fl, . . . , fn : R + R be n injective maps such that the derivative of the product 

fl . . . fn is never zero, then 

j : Tfl-’ XR--+C 

(01, . . . ,&-I, r) I-+ (eisl fl(r), . . . ,ei@-l fn_I(r),e-i(el+“‘+Hn-i)fn(r)) 

is an STR embedding. This ensues directly from the computation of the Jacobian 
Jacc(dj@) = (fi ... fn)‘. 

4.2.4. STR immersions of S2P-’ x R 
We obtain STR immersions of s2P-’ x [w as a direct application of the following obser- 

vation. 

Observation. Let D be an open set of R2P and let F = (Fl , . . . , Fzp) : 52 -+ lFt2P be a 
C” function such that a Fi /axj = 8 Fj/axi for every couple (i, j). Then the following map 
is special: 

F: Q ---+ 632p 

(Xl, . . . , x2p) w (XI + iF2, FI + ix2, . . . , xzp-l + iFzp, Fzp-t + ixzp). 

Indeed, after some permutations of rows and some multiplications of columns by i, the 
Jacobian matrix of F becomes Hermitian. Thus Jacc(di) = (-i)Pp for some p E [w. 

Application. We take Q = [w*P \ (O} which is topologically s2P-l x [w. Let F : [w2P \ 
(01 --+ Iw2P be given by F(x) = p( r x r wherer = 1x1 andp : rW$ -+ @.Then ) / 

Thus aFi/axj = aFj/axi and F : Iw2P \ (0) -4 C2P is special. The computation of 
Jacc (d F) gives 

Jaca,(dF) = (-i) 2p (P2 - r2)P-’ (r - pp’) 
r2P- I 

Any function p such that Jacc(dk) # 0 gives an STR immersion of s2P-’ x Iw in C2P. For 
instance p(r) = r + l/r is convenient. 
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Remark. The immersion @ : S2 -+ @” defined by Q(x) = x + iF(x) is Lagrangian. If 
@(r) is a primitive of p(r) then d@ = p(r) dr = p(r)x/r = F(x) and the image set Q(D) 
can be seen as the graph of d@. This shows that the order of terms xi and Fi in the definition 
of F is crucial. 

5. Stability of critical immersions for the J-volume 

We assume again M” orientable, compact, eventually with boundary. We denote by k2” 
a Kahler manifold. 

Definition. Let j : Mn --+ M2” be a totally real immersion which is critical for the 
J-volume. The immersion j is said to be stable for the J-volume if, for every deformation 
<p leaving the boundary of M” fixed, one has u”(0) 2 0. 

Stability problems often come down to a long computation of second derivative. Neverthe- 
less when &f2n = Cn, a straightfoward argument will allow us to avoid such a computation. 
Thii is the reason why we have divided the stability study in two parts. In the first part, a 
slight generalization of the notion of calibration leads us immediately to the result. In the 
second part, this notion no longer applies and we are compelled to do the computation. 

5.1. First case: M2n = Cn 

5. I. 1. Recall: Calibrated manifolds [ lo] 
A calibrated manifold is a Riemannian manifold (k”+J’, g) provided with a closed p- 

form cp such that, for every oriented p-plane l7: q(n) 5 vol(n). A (o-submanifold is an 
oriented submanifold MJ’ of kn+p such that C+IMP = ~011~~. The notion of q-submanifold 
is of central importance in the study of critical submanifolds of the volume functional. If 
MP is a compact q-submanifold of 2 +p then MP minimizes the volume homologically, 
i.e. for every submanifold NP such that i3NP = aMP and [MP - NP] = 0 in Hp(Mnff’), 
one has Vol(Mf’) 5 Vol(NP). 

5.1.2. Notion of J-calibration 
We give here a generalization of the notion of calibration. 

Definition. 
(1) A J-calibration of k2’ is a closed n-form q~ of k2n such that for every oriented n-plane 

n, one has q(n) 5 pJ vol(n). 
(2) A (o-submanifold respected to the J-volume is an oriented submanifold M” of k2n 

such that (DIM” = pJ ~011~“. 

Theorem 4. Let M” be a compact submamfold of M2’. If M” is a qo-subman~fold respected 
to the J-volume then M” minimizes the J-volume homologically, i.e. VJ(M”) 5 VJ(N”) 
for every submanifold Nn such that aN” = i3M” and [M” - N”] = 0 in H,,(M2’). 
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Proof It is just a reformulation of the proof of Harvey and Lawson [lo]. One has 

V,(M”) = 
s s 

v1= cp 5 VJ(N?. 0 

M” N” 

5.1.3. A J-calibration of d)” 
Let cp be the closed n-form of C” defined by 

cp = Re(e-‘PO dz) = Re(eKiBo dzt A . . . A dzn). 

Let J7 be an n-plane of C”, (~1, . . . , en) a (direct) orthonormal frame of Re(C”) and 

(Q,..., e,) a (direct) orthonormal frame of J7. There exists z = re’p such that et A. . .~e, = 
re’flet A . . . A ??n. So q(H) = rcos(/I - PO). On the other hand pi vol(J7) = r. Thus, 

v(n) I PJ vo1cm. 

Therefore cp is a J-calibration. Equality holds if and only if /I = /3u and qo-submanifolds 
respected to the J-volume are STR submanifolds. We have proved the following result. 

Theorem 5. Every totally real submanifold M” of C” criticalfor the J-volume, minimizes 
the J-volume homologically, i.e. VJ (M”) < VJ (Nn) for every submancfold N” such that 
aN” = aM” and [M” - N”] = 0 in H,, (M2”). 

Remark. If Mn is an STR submanifold and N” a submanifold such that [M” - N”] = 0, 
there is no reason for Nn to be totally real. However, JNn q is well-defined. 

5.2. Second case: M2n is any Kahler manifold 

The preceding argument does not apply because we no longer have a ‘good’ calibration. 
A (long) computation of second derivative lead us to: 

Proposition3. Let @ : Mnx] - ??, E[-+ M 2n be a deformation of M” leaving the 
boundary of M” fixed and such that a@/at = 6 = JX E JTM”. Assume that the J- 
volume of M” isJinite and that M” is critical for the J-volume (v’(O) = 0). Then 

v”(0) = 
U 

L(divpJX)2+3[dlnpJ(X)]2 -Ricci(X, X) /IJ.VO~MM". 

M” p: I 

where Ricci(., .) is the Ricci curvature tensor of M”‘. 

Theorem 6. If A?12n 1s a Kahler manifold with non-positive Ricci curvature, then every 
immersion j : M” --+ M2” critical for the J-volume is stable for the J-volume. 

Remark. These results generalize those obtained by B.-Y Chen, P.F. Leung and T. Nagano 
(see [5]), and by Oh [ 151 (cf. also [6]). 
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Proof of Proposition 3. Let Q, : Mn x] - E, c[ --+ k2” be any deformation of M” leaving 
theboundaryfixed.Weput:a@/at = E = JX+T E JTM”@TM”.Ifjiscritical,onehas 

u”(0) = s G"(0) 4G(0)3/4 
VOlME. 

M" 
A first computation gives 

d2G(E, E) = 4G(O) ~e’(?&$ +4 
i 

-c w;(E)wiJ(E) - wj;*(E)c~&(E) . 
i.j I 

In the case of a deformation in the direction E = JX E JTM", one has 

~B'(~~ei)=~h"(V,,JX) = -Cf3'*(GeiX) = -27 p(X), 
i i i 

CQ’(G,?,ei)= -S(JX,JX)+CBi(VeiVrJX), 
i i 

where SW, Z) = Ci @(rT(ei, Z)Z) and J? is the curvature tensor of fi2”. We get 

d2GUX,JX) = 4G(O) -~(JX,JX)+~B'(?,~?~JX)+~~~ /_L~(x> 
i 

(*) 

-c wj(Jx)o;(Jx) - mj*(Jx)wij,(Jx) . 

i,j 1 
As mi(JX) = -U;*(X) and wj*(JX) = -w;(X) + e’([ej, Xl), we can write 

d2G(Jx,Jx) =4G(O) -S(/X,JX)+~~~(~~~V~JX)+~~~ &x) 
i 

+ Ce’([ej, Xl&(X) +@([q, X])wj(X) 
i.j 

+ 0’ ([ej, Xl)@([ei, Xl) 

-c ~;*(x)coj*(x) - c+X)wj(X) . 

i.j I 
Let 9 be a tangential deformation of M" leaving the boundary fixed and such that a@/& = 
X E TM". Such a deformation does not change the J-volume of the immersion. Thus, 

d2v(JX, JX) = 
s 

d2G(X, X) + d2G(JX, JX) 
4G(0)3f4 

V0lil.l”. 

M” 
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Formula (*) yields 

d*G(X, X) = 4G(O) xHi(Vx’&ei) +4 
i 

Therefore, 

d*G(X, X) + d*G(JX, JX) 

=JG(O)( -S(JX, JX) +4 (FOi(6xe,,)* 

i i 

+ CQ'([ej, Xl)Wj(X) + Oj([e;, X])wj(X) 
i.j 

+ Ce’([ej, X])ej([ei, X]) + 47r* /L*(X) . 
i.j 1 

It is easy to verify that 

x@(ox?,e,) = x(exGeiX) + xe’([X, ej])w;‘(X) - XdivX 
j j i,j 

c x1-X = CO'([ej. Xl)o~(X) + CB'([ej, xlWj([e, 
i.j i,j 

‘I Xl>. 

Thus, 

d*G(X, X) + d*G(JX, JX) 

= 4G(O) - ??(JX, JX) - 3(X, x) + 4 
( i 

zei(? + -p’(o,J&JX) 
i 

+ xei(+eiGXX) - XdivX + 4n2 p*(X) . 
i 1 

A computation shows that if Z = U + JV E TM” $ JTMn is any vector field, one has 

,OJ xei(?ejZ) = div(pJU) -n ,oJLL(V). 
i 

Moreover, for a critical immersion p = 0, so 

d*G(X, X) + d*G(JX, JX) 
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= 4G(O) - s(JX, JX) - 3(X, X) - X divX 

+ 4 (Toi6xei))* + div(n(qxX + GEE)) ), 

where n is the projection over TM” parallel to JTM”. Since G(0) = pj, ,?.Zla~n = 0 and I 
xi @(V,yei) = d In pJ(X), we get 

d*v(JX, JX) 

= 
s 

]4(d In p,(X))* - X divX - s(JX, JX) - 3(X, X))pJ ~01~~ 

M” 

1 
4 Cd ln PJ (JO)* 

PJ 
- ,,XdivX} volMn - / Ricci(X, X)pJ volwn. 

M” M” 

Expanding div(pJdiv(X)X), we obtain 

-pJX div X = (div “‘)* - (dPJ(x))2 _ div(pJ div(X)X). 
PJ PJ 

Using this, we get 

d*v(JX, JX) = 
(divpJ X)* + 3 (dp./ (X))* 

- div(pJ div (X)X) ~01,~ 
PJ PJ 

M” 

- J Ricci(X, X)~J vol~~n. 

M” 

Seeing that Ela~n = 0, we finally get 

d*v(JX, JX) = 

This finishes the proof of proposition 3. 

Theorem 6 is an easy consequence of this proposition. 
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